hole semiconductor - traduzione in russo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

hole semiconductor - traduzione in russo

CONCEPTUAL AND MATHEMATICAL OPPOSITE OF AN ELECTRON
Electron holes; Hole (quasiparticle); Electron-hole; Hole conduction; Hole theory of electrons; Hole (semiconductor); Hole (electricity)
  • A children's puzzle which illustrates the mobility of holes in an atomic lattice. The tiles are analogous to electrons, while the missing tile ''(lower right corner)'' is analogous to a hole.  Just as the position of the missing tile can be moved to different locations by moving the tiles, a hole in a crystal lattice can move to different positions in the lattice by the motion of the surrounding electrons.
  • effective mass]]. The "filled band" is the semiconductor's [[valence band]]; it curves downward indicating negative effective mass.

hole semiconductor      

общая лексика

дырочный полупроводник

hole conduction         

общая лексика

дырочная электропроводность

дырочная проводимость

semiconductor device         
  • An n–p–n bipolar junction transistor structure
  • A stylized replica of the first transistor
  • Operation of a [[MOSFET]] and its Id-Vg curve. At first, when no gate voltage is applied. There is no inversion electron in the channel, the device is OFF. As gate voltage increase, the inversion electron density in the channel increase, the current increases, and the device turns on.
ELECTRONIC COMPONENT THAT EXPLOITS THE ELECTRONIC PROPERTIES OF SEMICONDUCTOR MATERIALS
Semiconductor devices; Semiconductor device physics; Semiconductor Devices; Semiconductor electronics; Semiconductor component; History of semiconductor device development

общая лексика

полупроводниковое устройство

электронное устройство, основные характеристики которого обусловлены прохождением тока через полупроводник

полупроводниковый прибор

Смотрите также

semiconductor

Definizione

semiconductor
<electronics> A material, typically crystaline, which allows current to flow under certain circumstances. Common semiconductors are silicon, germanium, gallium arsenide. Semiconductors are used to make diodes, transistors and other basic "solid state" electronic components. As crystals of these materials are grown, they are "doped" with traces of other elements called donors or acceptors to make regions which are n- or p-type respectively for the electron model or p- or n-type under the hole model. Where n and p type regions adjoin, a junction is formed which will pass current in one direction (from p to n) but not the other, giving a diode. One model of semiconductor behaviour describes the doping elements as having either free electrons or holes dangling at the points in the crystal lattice where the doping elements replace one of the atoms of the foundation material. When external electrons are applied to n-type material (which already has free electrons present) the repulsive force of like charges causes the free electrons to migrate toward the junction, where they are attracted to the holes in the p-type material. Thus the junction conducts current. In contrast, when external electrons are applied to p-type material, the attraction of unlike charges causes the holes to migrate away from the junction and toward the source of external electrons. The junction thus becomes "depleted" of its charge carriers and is non-conducting. (1995-10-04)

Wikipedia

Electron hole

In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or atomic lattice. Since in a normal atom or crystal lattice the negative charge of the electrons is balanced by the positive charge of the atomic nuclei, the absence of an electron leaves a net positive charge at the hole's location.

Holes in a metal or semiconductor crystal lattice can move through the lattice as electrons can, and act similarly to positively-charged particles. They play an important role in the operation of semiconductor devices such as transistors, diodes and integrated circuits. If an electron is excited into a higher state it leaves a hole in its old state. This meaning is used in Auger electron spectroscopy (and other x-ray techniques), in computational chemistry, and to explain the low electron-electron scattering-rate in crystals (metals and semiconductors). Although they act like elementary particles, holes are rather quasiparticles; they are different from the positron, which is the antiparticle of the electron. (See also Dirac sea.)

In crystals, electronic band structure calculations lead to an effective mass for the electrons that is typically negative at the top of a band. The negative mass is an unintuitive concept, and in these situations, a more familiar picture is found by considering a positive charge with a positive mass.

Traduzione di &#39hole semiconductor&#39 in Russo